Math 1B Chapter 8.1-8.4 Test Solutions — Fall *08

Test each series for convergence. Try to use a different test for each series.

(a) nth term test *9*10 (f) direct comparison *1*9
(b) geometric series test *1*2%4 (g) limit comparison test *6
(c) p-series test *9 (h) root test *4
(d) telescoping series *3 (1) ratio test *2*4*8
(e) integral test *7 (j) alternating series test *5
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6. 24—2_2 diverges by limit comparison with the harmonic series:
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7. Z 01 diverges as a p-series with p = 1. Of course, you can also use the integral test.
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8. Z— converges by the ratio test: lim — =lim——=0<1 You can also use the root
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