Math 1B Chapter 8.1-8.4 Test Solutions - Fall '08

Test each series for convergence. Try to use a different test for each series.

- (a) nth term test *9*10
- (b) geometric series test *1*2*4
- (c) p-series test *9
- (d) telescoping series *3
- (e) integral test *7

- (f) direct comparison *1*9
- (g) limit comparison test *6
- (h) root test *4
- (i) ratio test *2*4*8
- (j) alternating series test *5
- 1. $\sum_{n=0}^{\infty} \frac{(0.999)^n}{n!}$ converges by direct comparison with the geometric series

$$\sum_{n=0}^{\infty} (0.999)^n = \frac{1}{1 - 0.999} = 1000$$

- 2. $\sum_{n=0}^{\infty} \frac{(1.001)^n}{n!}$ converges by the ratio test: $\lim_{n \to \infty} \frac{(1.001)^{n+1}}{(n+1)!} \frac{n!}{(1.001)^n} = \lim_{n \to \infty} \frac{1.001}{n+1} = 0 < 1$
- 3. $\sum_{n=1}^{\infty} \Delta x \left(\ln (n+1) \ln n \right)$ diverges as a telescoping series:

$$\sum_{n=1}^{N} \Delta x \left(\ln (n+1) - \ln n \right) = \Delta x \ln (N+1) \to \infty \text{ as } N \to \infty$$

- 4. $\sum_{k=0}^{\infty} \frac{3^k}{4^{k+1}} \text{ converges as a geometric series: } \sum_{k=0}^{\infty} \frac{3^k}{4^{k+1}} = \frac{1}{4} \sum_{k=0}^{\infty} \frac{3^k}{4^k} = \frac{1}{4} \sum_{k=0}^{\infty} \left(\frac{3}{4}\right)^k = \frac{1}{4(1-3/4)} = 1$
- 5. $\sum_{j=1}^{\infty} \left(-\frac{1}{5} \right)^j \left(-\frac{1}{6} \right)^j = \sum_{j=1}^{\infty} \left(-1 \right)^j \left(\frac{6^j 5^j}{30^j} \right)$ converges by the alternating series test.
- 6. $\sum_{n=1}^{\infty} \frac{n^3 + 1}{n^4 + n^2 2}$ diverges by limit comparison with the harmonic series:

$$\lim_{n \to \infty} \frac{n^3 + 1}{n^4 + n^2 - 2} \div \frac{1}{n} = \lim_{n \to \infty} \frac{n^4 + n}{n^4 + n^2 - 2} = 1$$

- 7. $\sum_{k=100^{100}}^{\infty} \frac{0.1}{k}$ diverges as a *p*-series with p=1. Of course, you can also use the integral test.
- 8. $\sum_{x=1}^{\infty} \frac{e^x}{x!}$ converges by the ratio test: $\lim_{x \to \infty} \frac{e^{x+1}}{(x+1)!} \frac{x!}{e^x} = \lim_{x \to \infty} \frac{e}{x+1} = 0 < 1$ You can also use the root

test here: $\lim_{n\to\infty} \sqrt[n]{\frac{e^n}{n!}} = \frac{e}{\lim_{n\to\infty} \sqrt[n]{n!}} = 0$. To see this, use $\ln(n!) \approx \int_0^n \ln t \, dt$ for large n and consider

$$\ln\left(\lim_{n\to\infty}\sqrt[n]{n!}\right) = \lim_{n\to\infty}\ln\left(\sqrt[n]{n!}\right) = \lim_{n\to\infty}\frac{\ln\left(n!\right)}{n} = \lim_{n\to\infty}\frac{\int_0^n\ln t\,dt}{n} = \lim_{n\to\infty}\ln n = \infty$$

- 9. $\sum_{z=2}^{\infty} \frac{z}{\ln z}$ diverges by direct comparison with the harmonic series, since $\frac{z}{\ln z} > \frac{1}{z}$ for z > 2
- 10. $\sum_{z=2}^{\infty} \frac{x^x}{x!}$ diverges by the *n*th term test, since $\frac{x^x}{x!} > 1$ if x > 1.