Test each series for convergence. Try to use a different test for each series.
(a) nth term test *9*10
(f) direct comparison $* 1 * 9$
(b) geometric series test $* 1 * 2 * 4$
(g) limit comparison test *6
(c) p-series test $* 9$
(h) root test *4
(d) telescoping series *3
(i) ratio test $* 2 * 4 * 8$
(e) integral test *7
(j) alternating series test *5

1. $\sum_{n=0}^{\infty} \frac{(0.999)^{n}}{n!}$ converges by direct comparison with the geometric series $\sum_{n=0}^{\infty}(0.999)^{n}=\frac{1}{1-0.999}=1000$
2. $\sum_{n=0}^{\infty} \frac{(1.001)^{n}}{n!}$ converges by the ratio test: $\lim _{n \rightarrow \infty} \frac{(1.001)^{n+1}}{(n+1)!} \frac{n!}{(1.001)^{n}}=\lim _{n \rightarrow \infty} \frac{1.001}{n+1}=0<1$
3. $\sum_{n=1}^{\infty} \Delta x(\ln (n+1)-\ln n)$ diverges as a telescoping series:
$\sum_{n=1}^{N} \Delta x(\ln (n+1)-\ln n)=\Delta x \ln (N+1) \rightarrow \infty$ as $N \rightarrow \infty$
4. $\sum_{k=0}^{\infty} \frac{3^{k}}{4^{k+1}}$ converges as a geometric series: $\sum_{k=0}^{\infty} \frac{3^{k}}{4^{k+1}}=\frac{1}{4} \sum_{k=0}^{\infty} \frac{3^{k}}{4^{k}}=\frac{1}{4} \sum_{k=0}^{\infty}\left(\frac{3}{4}\right)^{k}=\frac{1}{4(1-3 / 4)}=1$
5. $\sum_{j=1}^{\infty}\left(-\frac{1}{5}\right)^{j}-\left(-\frac{1}{6}\right)^{j}=\sum_{j=1}^{\infty}(-1)^{j}\left(\frac{6^{j}-5^{j}}{30^{j}}\right)$ converges by the alternating series test.
6. $\sum_{n=1}^{\infty} \frac{n^{3}+1}{n^{4}+n^{2}-2}$ diverges by limit comparison with the harmonic series:
$\lim _{n \rightarrow \infty} \frac{n^{3}+1}{n^{4}+n^{2}-2} \div \frac{1}{n}=\lim _{n \rightarrow \infty} \frac{n^{4}+n}{n^{4}+n^{2}-2}=1$
7. $\sum_{k=100^{100}}^{\infty} \frac{0.1}{k}$ diverges as a p-series with $p=1$. Of course, you can also use the integral test.
8. $\sum_{x=1}^{\infty} \frac{e^{x}}{x!}$ converges by the ratio test: $\lim _{x \rightarrow \infty} \frac{e^{x+1}}{(x+1)!} \frac{x!}{e^{x}}=\lim _{x \rightarrow \infty} \frac{e}{x+1}=0<1$ You can also use the root test here: $\lim _{n \rightarrow \infty} \sqrt[n]{\frac{e^{n}}{n!}}=\frac{e}{\lim _{n \rightarrow \infty} \sqrt[n]{n!}}=0$. To see this, use $\ln (n!) \approx \int_{0}^{n} \ln t d t$ for large n and consider $\ln \left(\lim _{n \rightarrow \infty} \sqrt[n]{n!}\right)=\lim _{n \rightarrow \infty} \ln (\sqrt[n]{n!})=\lim _{n \rightarrow \infty} \frac{\ln (n!)}{n}=\lim _{n \rightarrow \infty} \frac{\int_{0}^{n} \ln t d t}{n}=\lim _{n \rightarrow \infty} \ln n=\infty$
9. $\sum_{z=2}^{\infty} \frac{z}{\ln z}$ diverges by direct comparison with the harmonic series, since $\frac{z}{\ln z}>\frac{1}{z}$ for $z>2$
10. $\sum_{z=2}^{\infty} \frac{x^{x}}{x!}$ diverges by the nth term test, since $\frac{x^{x}}{x!}>1$ if $x>1$.
